skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Owusu-Ansah, Alfred"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With technologies changing faster than ever before, engineering faculty must continuously update the technologies they use and teach to students to meet accreditation requirements and keep up with industry standards. Many do not, however. Additionally, existing models of technology adoption do not account for all variability within intention to use a technology, nor its actual use. Informed by the Unified Theory of Acceptance and Use of Technology (UTAUT), this study examined which constructs from prior models apply to engineering faculty’s adoption of industry-specific technologies, as well as other factors influencing faculty adoption of these technologies for their teaching or research. We interviewed 21 engineering faculty at a Midwestern United States STEM-focused institution about their adoption of engineering technologies. Deductive and inductive coding were used to identify themes within the qualitative data. Constructs from existing models were confirmed to influence faculty engineering technology adoption. We also identified specific Facilitating Conditions (Other People, Digital Resources, Non-Digital Resources, Time, and Formal Training) that faculty leverage to adopt new engineering technologies, and uncovered two additional themes—Access and Personal Traits, including several component traits (Persistence, Humility, Self Efficacy, Growth Mindset, Ambiguity Acceptance, and Curiosity) that influence faculty engineering technology adoption. We propose a new Theory of Faculty Adoption of Engineering Technologies specific to faculty adoption of new engineering technologies. These findings have the potential to help universities determine how to effectively support faculty in providing their students with relevant technological skills for entry into the engineering workforce. 
    more » « less
  2. This Workshop will present the results from a study exploring the facilitating conditions which support the adoption of new engineering technologies among engineering faculty. Suggested interventions to promote greater technology adoption among faculty will be reviewed. Participants will discuss ways to build upon these suggested interventions and leave with concrete ideas about how to promote faculty technology adoption on their campuses. 
    more » « less
  3. As we prepare new engineers to take on the fourth industrial revolution, engineering faculty are tasked with selecting, learning, evaluating, using, and teaching new technologies to apprentice engineers. To understand how these important tasks are being achieved, 21 engineering faculty members in a STEMfocused Midwest US university were interviewed. Engineering faculty showed an awareness of the rhetorical power of manuals and other instructional resources. Unfortunately, these resources are often inadequately designed to meet the unique needs of engineering faculty. In this paper, we propose that there is an exigency for a faculty-focused subgenre of instructional writing which addresses the needs of engineering instructors who teach students how to use technology while simultaneously learning how to use it themselves. Because of the overwhelming roles that faculty perform, we propose that the composition of this sub-genre should be the duty of technical writers who work closely with technology developers and engineering faculty. We forward that such a subgenre may find space in digital and non-digital learning resources through the inclusion of both the technical information necessary to use the technology, as well as pedagogical tools and activities to support student learning. These materials should be released in accordance with technology updates to ensure faculty are best positioned to teach the most current technologies. The proposed faculty-focused instructional writing subgenre may have implications beyond engineering education, because the need for learning resources may not be unique to engineering faculty, and likely exists for all university faculty learning and introducing new technologies within their courses. 
    more » « less
  4. As essential facilitators in the process of the formation of future engineers, engineering faculty determine which technologies students learn and adopt during their engineering studies. Faculty members’ ability to accept new and relevant engineering technologies (such as programming languages, software, and instruments) and adopt them in their curriculum directly affects the relevance of engineering graduates’ technical skills. Additionally, by adopting and teaching new and relevant technologies, engineering faculty model life-long technology adoption to their students. This paper summarizes the preliminary results of an NSF project funded through the Directorate for Engineering, Engineering Education and Centers. A main goal of the project is developing an understanding of the factors that support or inhibit engineering faculty technology acceptance. This paper focuses on a portion of the results related to facilitating conditions that support technology adoption that emerged from the qualitative analysis of interview transcripts from engineering faculty at a Midwestern, USA, technologically-focused university. The accompanying poster session will present these findings, as well as provide a deeper understanding of the data related to one facilitating condition – Peers and Mentors. 
    more » « less
  5. This work-in-progress paper shares preliminary results from a research project that addresses three primary objectives: (1) to develop a conceptual model of technology adoption among engineering faculty through qualitative interview research; (2) to propose an adaption of existing models for technology adoption with appropriate constructs for engineering faculty; and (3) to propose one or more specific interventions to increase faculty adoption of new engineering technologies. In this paper, we focus primarily on the work in progress to meet the first objective. Specifically, we highlight how our preliminary findings about the factors affecting technology adoption, identified from interviews with engineering faculty, align with or differ from factors in previous models for technology adoption. Subjective norm, voluntariness, utility, technology cost, and facilitating conditions, were all preliminary factors found in our data that align at least somewhat with constructs from previous models [1], [2]. Time, access to the technology, efficiency/ease of work, and self regulation are factors that we have identified which are absent from the most widely applied models of technology adoption. We consider what our findings might imply in engineering education contexts. 
    more » « less